Archive for the ‘Fixed Point’ Category

Three Day Digital Control Course August 22-24 California

Friday, July 22nd, 2016

The ELMG Digital Power Electronics Control Course

Three days of focused unique training in digital control of power electronics!

Our Digital Power Electronics Control Course overs the essential knowledge and know-how for engineers to implement digital power electronic control!

Come to the Three Day Digital Control Course in Camarillo, California August 22-24, 2016.  Register here.

How did the course came about?

Essentially the course came about because we were asked by one of our customer’s to provide one. The story is we were in the middle of a “fix up” job where the power supply had shown some control instability at its final release testing. The testing that showed the problem was passing a short circuit test of parallel connected power supplies. When the short circuit was removed the supplies came out of current limit, however they did not come out of the limit at exactly the same time. This created an oscillation where individual power supplies came out of current limit and then returned to current limit.  It was possible for the oscillation to continue indefinitely.  This was an unacceptable and embarrassing problem.

Six months of expertise in a three day course

During the six month project to rework the control code we spent lots of time teaching the team about the underlying issues that had been missed when the controller had been designed, coded and tested.  And part way through the “fix-up” the R and D manager suggested we could put a course together covering all that the team needed to know.

And so the digital control course was born

The first course covered exactly what we had discovered during the fix up job.  This included lots of digital expertise targeted for power electronics.  The areas we covered were diverse from;

  • Numeric precision loss in filters
  • Improvement of modulation spectral performance
  • Stability
  • The effect of numeric precision on stability
  • Best filter forms
  • Direct digital control design
  • Linearising control loops

What is covered in our course?

The course was created at the request of a Power Electronics Research  and Development manager.  He asked that we make it specific his team’s needs.  And this is why the course has the unique structure that it has.  We have been through the pain and heartbreak of having digital control development go wrong and have seen clearly where the repeated problems lie; our course addresses those areas.

Digital PWM and VPO modulators

One of the big differences between digital power electronics control and conventional analog control is the timer precision in digital modulators. This difference can be corrected or made negligible and in some cases can be made an advantage.  Spectral control in digital modulators is a focus area in the course as it is so effective.

Digital Precision in control blocks

It is possible to use a digital system and adjust the coefficients of the filters so that small inputs result in no output from the filter. Such scaling issues often lead to a loss of precision in the digital control system. The resulting slip-strike behavior can create limit cycle oscillations in the power converter output.

Direct Digital design of controllers

The “design then translation” approach of taking analog controllers to digital form can be avoided by using the direct digital design approach. This simple but powerful method of digital control loop design is covered in the course.

Converter non-linearity correction

Certain converter topologies are non-linear either in the control input to the output or the conversion ration.  Dealing with the converter non-linearity to achieve high bandwidth is key to stable parallel connected converters.

Stability

The course covers the fundamentals of stability from a physical basis with a focus on measurements of power converter transfers.  This along with a simple framework for managing margins and robustness is an integral part of the course.

Why we offer the course?

Understanding and implementing digital control of power electronics offers great advantages for configuration and flexibility. However, this is not without road blocks and issues that need to be designed around. This course provides the know how to get digital control working robustly and reliably.

How do I get on the course?

The course is next being run in Camarillo, California USA August 22-24.  To register for the course, click and visit the information page here. Press the ‘Register’ button on the page and this will take you to the shopping cart for the course. Complete the purchase to register for the course.

Next course

The next course is being held August 22-24 in Camarillo, California, USA.

Hotels

HOTELS

There are several hotels a short distance from the Ridley Engineering Design Center. The prices below reflect their current prices for August 2016. The last hotel listed is a nice beachfront resort if you do not mind the 25-minute commute to the office. Regardless of your selection, we recommend arriving on Sunday evening and departing Wednesday evening or Thursday.

 

Best Western Inn

295 E Daily Drive, Camarillo

0.3 mi.

805-987-4991

$100/night

Book.western.com

Residence Inn by Marriott

2912 Petit Street, Camarillo

2.8 mi.

805-388-7997

$185/night

Marriott.com

Courtyard by Marriott

4994 Verdugo Way, Camarillo

4.3 mi.

805-388-1020

$180/night

Marriott.com

Hampton Inn & Suites

50 W Daily Drive, Camarillo

1.1   mi.

805-389-9898

$175/night

Hilton.com

Hilton Garden Inn

200 Solar Dr., Oxnard

5.6 mi.

805-983-8600

$155/night

Hilton.com

Embassy Suites Mandalay Beach Resort

2101 Mandalay Beach Rd., Oxnard

15.4 mi.

805-984-2500

$200/night

Hilton.com

Travelling to the course

Transportation

Airports: There are three options for airports. Bob Hope Airport in Burbank will be the least congested and is serviced by American, United, Delta, Southwest and JetBlue:

Bob Hope Airport (BUR)

Los Angeles International Airport (LAX)

Santa Barbara Airport (SBA)

Shuttle: The Roadrunner Shuttle is a Camarillo-based service that provides door-to-door service from the airport. www.rrshuttle.com

Driving:

Bob Hope Burbank Airport (BUR) via US 101

https://goo.gl/maps/caMGB9QSEqP2

Los Angeles International Airport (LAX) via US 101

https://goo.gl/maps/kRBDQifyVfM2

Los Angeles International Airport (LAX) via Pacific Coast Highway (PCH)

https://goo.gl/maps/XPbBhNQYTzj

Santa Barbara Airport (SBA) via US 101

https://goo.gl/maps/2fGP3K7FMZx

About the presenter

3 Day Digital Control Course

Dr. Hamish Laird

Dr. Hamish Laird is a well regarded digital power electronics control engineer, researcher, lecturer and teacher.  Hamish is Chief Technology Officer at ELMG Digital Pwoer and holds a visiting academic position at the University of Canterbury in Christchurch, New Zealand.

During his career Dr Laird has worked on the control for;

  • High Voltage Direct Current Transmission
  • Reactive Power Compensators
  • AC and DC Motor Drives
  • DC to DC converters including LLC and phase shifted bridges
  • Medium and low voltage AC motor starters

Dr. Laird has worked for;

  • Alstom Grid (GEC Alsthom)
  • Eurotherm Drives
  • University of Canterbury
  • Aucom

Through ELMG Digital Power Dr. Laird  has provided advice, services and products to;

  • ABB
  • Enphase
  • Comsys
  • Evashred
  • TNEI
  • Eaton

Dr Laird says

“In designing and presenting the course we aim to have engineers able to use digital control in power electronics to achieve robust and reliable results.  See you in Camarillo”.

 

How to Register

Click here to register.  

P.S. Please note that the ELMG Digital Power course is being hosted at the Ridley Engineering Centre in Camarillo, California.  Ridley Engineering are processing all course registrations viatheir webstore.  Click here to register.  

Latest news from the LinkedIn Digital Power Electronics Control Group

Monday, August 31st, 2015

What is the latest news from the Linkedin Digital Power Electronics Control group?

The group now has over 600 3440 members (as of January 25 2022). To join the group please click here.

In the group we have lively discussions with people contributing their knowledge and experience. To all who have contributed and made the group so much fun – a really big thank you.

In the group we have had discussions that cover

  • Digital PWM modulators
  • ADC (analogue to digital converters)
  • Choosing the number of bits in a digitally controller,
  • Implementing digital filters,
  • Processor choices and coding.

How many bits are required in digital control of power electronics

Recently the how many bits are required was brought up and addressed in this way by John S.

There are two aspects to selecting the number of bits: measurement resolution and control variable resolution. For measurement resolution, the ADC resolution is the deciding factor, and this can be increased by oversampling.

In a current control application I was recently working on, I required 14 bits of resolution to meet a target requirement of +-1% of ADC quantitization error at 10% current. This resolution was relatively simple to achieve by oversampling the 12 bit ADC in the uC.

The resolution of the control variable, e.g. uC timer resolution, is just as critical in fast systems. If the resolution is too coarse, jitter in the control variable will appear at the output. With slower system dynamics, e.g. in voltage controlled systems, jitter in the control variable causes less jitter in the output variable because of the smoothing effect of the output capacitor. Ideally the resolution of the control variable should match that of the measured variable.

Thanks John.

Thanks also to all the other contributors.

Other discussions cover measuring stability of power converters, what is the effect of PWM timer quantisation and what is the best converter for isolated bi-directional DC to DC.

 Join the group by clicking here.

The best integrator for digital control.

Look for this symbol to identify the group.

Fixed Point Numerical Systems for Digital Control

Saturday, August 29th, 2015

One question which is commonly asked is “how do I represent fractional numbers on my fixed-point MCU, DSP or FPGA?” One of the best solutions to this is use of the Q number system.

The Q number system is a fixed point system where the available bits are divided amongst the integer bits (those to the left of the decimal point), fractional bits (those to the right of the decimal point) and a sign bit. You may ask “I know how integers are represented in binary but not fractions?” The answer is that just like integers, fractional bits are just multiplied by powers of two, except the powers are negative. For example:

  • 0.011B = 0*2-1+1*2-2+1*2-3 = 0.375

Q numbers can take on multiple forms with different numbers of fractional and integer bits. They are commonly written mQn or Qm.n where m is the number of integer bits and n is the number of fractional bits. Note m+n+1 = total number of bits available.

Arithmetic

Addition/Subtraction:

Q numbers of the same form can be added together with no issue. The only thing to consider here is overflow.

If you have different forms they need to be converted before the arithmetic. This can be done by shifting. For example:

  • 2Q13 << 1 is now 1Q14 (lose an integer bit and gain a fractional bit) and
  • 3Q12 >> 1 is now 4Q11 (lose an fractional bit and gain an integer bit)

Multiplication:

  • The rule when multiplying two Q numbers together is:
  • m1Qn1 * m2Qn2 = (m1+m2)Q(n1+n2)

Once the multiplication is complete, then a shift is needed to get it into the Q format the system needs.

The big issue with multiplication is overflow and precision loss. When there exists m > 0, then scaling back to your original system is difficult. For example:

  • 2Q13 * 2Q13 = 4Q26

In order to scale this back to the original 16 bits you either have to sacrifice integer bits (you have to be very careful that the top integer bits don’t contain information – limit the overflow) or lose precision by discarding fractional bits. The solution to this is to try and use systems where m=0.

Digital Control

Choosing the Q number system for digital control is important. The general rule of thumb is you want as much precision as possible and you want to avoid overflows in multiplication. Therefore the best solution is to make all your bits fractional (i.e. m=0). This gives as much precision as your system allows and makes sure there are no overflows (<1 x <1 = <1). In a 16-bit system this is 0Q15 (referred to as Q15).

Once you have your system then you need to make sure that all inputs and outputs fit this system and falls within the range -1 <= x < 1. This is as simple as setting your inputs and outputs to be +1 = full scale positive and -1 = full scale negative.

The key for this to work in a digital control system is to remember the gains on the inputs and outputs. This means remembering what +1 and -1 stand for. For example a voltage input may be -230V to +230V and an output maybe -400V to 400V. The input gain is therefore 1/230 and the output gain 400. Once you have these gains you need to include them in your design of the control system, whether it be through calculation or simulation. Failing to include them leads to incorrect margins and possibly instability.

One potential pitfall of the m=0 approach is how to deal with numbers greater than one. In digital control these can come up quite often generally in biquad filters. The trick is to this is to scale the coefficients by ½, perform the multiplies and then scale back by 2 (shift left 1). This does lose one bit of precision in this particular calculation however it is better than losing one fractional bit in all calculations.

Conclusion

Q number systems allow the designer to use a reliable fixed point system to represent fractional numbers. This allows the use of less expensive fixed point processors instead of the more complex and generally more expensive floating point alternatives.

Download the report ‘Your Digital Power Future – Roadblocks to Avoid’ to learn about the three key issues to watch out for in the Digital Control of Power electronics.


Download report now